A Sharp Double Inequality between Harmonic and Identric Means

نویسندگان

  • Yu-Ming Chu
  • Miao-Kun Wang
  • Zi-Kui Wang
چکیده

and Applied Analysis 3 Theorem 1.1. If p, q ∈ 0, 1/2 , then the double inequality H ( pa ( 1 − pb, pb 1 − pa < I a, b < H ( qa ( 1 − qb, qb 1 − qa 1.8 holds for all a, b > 0 with a/ b if and only if p ≤ 1 − √ 1 − 2/e /2 and q ≥ 6 − √6 /12. 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 6 − √6 /12 and μ 1 − √ 1 − 2/e /2. Then from the monotonicity of the function f x H xa 1 − x b, xb 1 − x a in 0, 1/2 we know that to prove inequality 1.8 we only need to prove that inequalities I a, b < H λa 1 − λ b, λb 1 − λ a , 2.1 I a, b > H ( μa ( 1 − μb, μb 1 − μa, 2.2 hold for all a, b > 0 with a/ b. Without loss of generality, we assume that a > b. Let t a/b > 1 and r ∈ 0, 1/2 , then from 1.1 and 1.2 one has logH ra 1 − r b, rb 1 − r a − log I a, b log { r 1 − r t2 [ r2 1 − r 2 ] t r 1 − r } − log t 1 − t log t t − 1 1 log 2. 2.3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Convex Combinations Bounds of Centroidal and Harmonic Means for Weighted Geometric Mean of Logarithmic and Identric Means

In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved. We find the greatest value λ(α) and the least value Δ(α) for each α ∈ (0,1) such that the double inequality: λC(a,b)+(1−λ)H(a,b) < Lα (a,b)I1−α (a,b) < ΔC(a,b)+(1−Δ)H(a,b) holds for all a,b > 0 with a = b. Here, C(a,b), H(a,b) , L(a,b) and I...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Sharp bounds for harmonic numbers

In the paper, we collect some inequalities and establish a sharp double inequality for bounding the n-th harmonic number.

متن کامل

Note on Certain Inequalities for Means in Two Variables

Given the positive real numbers x and y, let A(x, y), G(x, y), and I(x, y) denote their arithmetic mean, geometric mean, and identric mean, respectively. It is proved that for p ≥ 2, the double inequality αA(x, y) + (1− α)G(x, y) < I(x, y) < βA(x, y) + (1− β)G(x, y) holds true for all positive real numbers x 6= y if and only if α ≤ ( 2 e )p and β ≥ 23 . This result complements a similar one est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014